Python 3 Clone of J. Walker’s
Neuron Network Associative
Memory for Commodore 64

Seminar Paper

Patrik Reiske?’

Humboldt-Universitat zu Berlin
Kultur-, Sozial- und Bildungswissenschaftliche Fakultat
Institut fur Musikwissenschaft und Medienwissenschaft

Submitted on March 16, 2022 to Dr. Dr. Stephan Héltgen?

1 Technische Universitét Berlin, Matriculation Number 498 142

2 Humboldt-Universitat zu Berlin

Contents

Contents
1 Introduction
2 Implementation
2.1 Analysis of the J. Walker’s Source Code
2.2 Reimplementation in Python 3
3 Usage
4 Conclusion
5 Discussion
Bibliography
Source Code Listings
pattern.py
main.py
Affidavit

g W N

11
17
18
19
20
21
21
26
31

1 Introduction

Humans have dreamed of creating artificial intelligent machines ever since
ancient times, aiming to overcome the limits biological living beings are
constrained by (Cave & Dihal, 2018). Throughout history, the advances
towards achieving this goal inspired some but also scared others, fearing
a machine superiority dystopia — and for some it even did both (Kubrick
& Clarke, 1968; The Wachowskis, 1999). Today, with digital computer
technology unleashing the fast-paced evolution of artificial intelligent ma-
chines, the call for regulations of the field is getting louder and the split
between supporters and opposers becomes deeper (Toews, 2020).

Just like in any other (macro social) discussion, the question of whether
and how to regulate artificial intelligence (Al), and others can probably
best be answered once the issue is understood — not necessarily in its
depth but in its entirety of effects — by all discussants. However, develop-
ing the technical aspect of such an understanding of Al can be a difficult
task for anyone without a proper background in mathematics.

Learning — no matter what subject — works best when starting off with
an easy example (MIT-TLL, no date). This is especially true for cutting
edge knowledge like Al. Hence, preparing a learning resource that is ref-
erencing to a simple Al approach is a reasonable thing to do. And even
though one could argue that a multitude of such resources already exists
(Agora, 2022), it’s the diversity of resources that promises the best learn-
ing success for any learner.

The implementation of a (by todays means) simple neural network by
Walker (1987) appears to be a suitable basis for such a learning resource.
It consists of a fully connected? single layer neural network, as figure 1
shows, as well as a command-line user interface, as seen in figure 2, and
can be used to learn a pattern recognition for digits and uppercase letters;
it is discussed in detail in section 2.1.

In case of the present seminar paper, Python 3 is the programming lan-
guage of choice for two reasons: 1) it is an easy to read and learn lan-
guage, and 2) it is the most used language in the field of Al. Even though it
offers — compared to BASIC — a wide variety of features that would al-
low a lean reimplementation, this is not an appropriate approach when
preparing such a learning resource. Under the assumption that this re-
source will be used to ease access to Al, and for people studying the evo-
lution of the field, recognizability of the source code is of importance. That
is why the code discussed in section 2.2 is more of a literal translation
than a modern day reimplementation.

1 Neural layers and networks are considered fully connected if every neu-
ron of a previous layer is connected to any neuron of a subsequent layer.

<>

:@
O :®
O @

Figure 1: Simplified schematic of the fully connected single layer neural
network by Walker (1987), where input neurons are green, weights inter-
connecting the neurons are red, and output neurons are blue.

Figure 2: Command-line user interface by Walker (1987).

Also, to make using the created learning resource more playful and to
honor the original implementation, the user interface seen in figure 2 is
widely recreated and waiting times during execution are added — creating
a somewhat nostalgic user experience.

2 Implementation

This section splits in two parts: analysis of the original software, and doc-
umentation of the reimplementation. In doing so, the main differences be-
tween the two, and difficulties encountered are highlighted.

2.1 Analysis of the J. Walker’s Source Code

In this section, the entire original source code by Walker (1987) is ana-
lyzed before discussing the reimplementation in Python in the next sec-
tion.

Here, it is to note that referencing to Walker (1987) is omitted in the rest of
this subsection, as it should be obvious to any reader that anything refer-
ences to it is the original project itself. Also, for reference on BASIC com-
mands and any other C64 related information, visit the C64-Wiki website.

The operating system running on the Commodore 64 allowed text output
to the display only. So it’s little surprising that the screen’s appearance is
configured first.

10 rem screen configuration
20 poke 53280,13

30 poke 53281,6

40 print chr$(147);

50 open 15,8,15

Here, the foreground (text) color is set to be light green, and the back-
ground color to be blue. Also, the screen is cleared and a file handle is
opened for later use.

60 rem variable declarations
70 dim f1%(42),12%(42),m%(42,42)
80 dim v%,j,1i

Yet before outputting the user interface for the first time and awaiting the
user’s input, the variables representing the neural network as well as oth-
ers used during runtime are declared.

The variables f1 and f2 are arrays of 42 values each, representing the
neural network’s output and input layer, whereas the 42x42 shaped array
m contains the weights connecting the two. The other variables, v, j, and |,
are used as helpers, e.g. loop variables.

1 https://www.c64-wiki.com

https://www.c64-wiki.com

90 rem initialise screen

100 print chr$(147);

110 print " neuron network associative memory"
120 print

130 for i=1 to 12: print chr$(17);: next i
140 print "fl - teach pattern "

150 print "f2 - dump matrix"

160 print "f3 - randomize pattern ";

170 print "f4 - forget all"

180 print "f5 - recall pattern "

190 print "f6 - quit"

200 print "f7 - disc save "

210 print "f8 - disc load"

220 print

230 print "a-z, 0-9: load pattern"

240 rl =4 : cl=5: gosub 600

250 rl =4 : cl =25 : gosub 600

260 gosub 750

270 gosub 860

280 gosub 970:print " ready "

290 get a$: if a$="" goto 290

Then, after clearing the display, the user interface is printed for the first
time: first the title, then empty lines where the contents of variables f1,
and f2 will be displayed, the list of available commands and user inputs,
the patterns stored in the aforesaid variables and borders around them,
and the status information.

Finally, the program waits for some (not empty) user input.

300 gosub 970:print " "

310 k=asc(a$)

320 ifa$>="0"anda$<="9"thenk=k+64:goto340
330 if a$ < "a" or a$ > "z" then 500

340 gosub 970:print "fetch ";a$

350 %=0

360 k=(k-64)%8+53248

370 poke56333,127:poke 1,peek(1)and251
380 fori=0to6:poked49408+1i, peek(k+1i) :inext
390 poke 1,peek(1) or 4:poke 56333,129
400 for i =0 to 6

410 j% = peek(49408+i)/2

420 for k=1 to 6

430 1%=1%+1

440 f1%(1%) = -1 + (2 * (j% and 1))

450 1%=7%/2

460 next k

470 next i

480 gosub 750 : gosub 860 : goto 280

In case the user input was a digit or a letter, its representation as 7x6
element pattern is loaded from the ROM containing symbol representa-
tions into variable f1 and updates the information displayed on the screen.
Then, the program goes back to awaiting user input.

490
500
510
520
530
540
550
560
570
580
590

rem dispatch function key commands
j%=asc(a$)-132

if j%=1 then gosub 1000:goto 280
if j%=5 then gosub 1080:goto 90

if j%=2 then gosub 1210:goto 280
if j%=6 then gosub 1680:goto 280
if j%=3 then gosub 1290:goto 280
if j%=7 then print chr$(147);:closel5:end
if j%=4 then gosub 1800:goto 90

if j%=8 then gosub 1990:goto 90

go to 280

User commands other than loading patterns are handled by calling corre-
sponding functions.

740

rem draw borders for fields
for i=0 to 1
v=1024+40%(r1+(ix8))+cl
poke v,112+(-3%1)

for j=1 to 8

poke v+j,67

next j

poke v+9,110+(15%1)
next i

for i=1 to 7
v=1024+40%(r1+i)+cl
poke v,93

poke v+9,93

next i

return

The function for drawing the borders surrounding the displays of the pat-
terns stored in variables f1 and f2 are drawn by printing symbols to specif-
ic positions on the screen by looping their coordinates.

750
760
770
780
790

960

rem update field f2% on screen
1%=0

for i=0 to 6

v%s = 1024+40%(i+5)+6

for j=2 to 7

-L°o= 10/0_'_1
iff1%(1%)=1thenpokev%+(8-j),81:goto830
poke v%+(8-j),32

next j

next i

return

rem update field f1% on screen
1%=0

for 1 =0 to 6
V%=1024+40%(i+5)+26

for j=2 to 7

1%=1%+1

if f2%(1%)=1 then poke v%+(8-j),81l:goto 940
poke v%+(8-j),32

next j

next i

return

The functions for displaying the patterns stored in variables f1 and f2 both
work the same way: iterating the 42 values in the variables in sequences

of 6 (width of the pattern) values and printing whitespaces or asterisks to
corresponding positions.

970 rem position to status area

980 print chr$(19);

982 for i=1 to 21: print chr$(17);: next i
990 return

Here, the status bar is cleared so that the functions handling the com-
mands can print information there.

1000 rem train on pattern in f1%
1010 gosub 970:print "training"
1020 for 1 =1 to 42

1030 for j =1 to 42

1040 ms(i,])=m%(i,j)+f1%(1)*f1%(])
1050 next j

1060 next i

1070 return

The weight matrix m is trained as

m;;=m;;+fi; /i

where i and j are indexes addressing the variables’ elements that are
looped such that all elements in m are updated. This essentially imple-
ments a trivial similarity measure of pairs of elements in variable f1 for a
set of patterns.

1080 rem print part of matrix

1090 print chr$(147);

1100 for i=1 to 24

1110 for j=1 to 39

1120 ifm%(i,j)<0thenprint chr$(150);:gotol140
1130 print chr$(154);

1140 print chr$(asc("0")+abs(m%(i,j)));

1150 next j

1160 print

1170 next i

1180 print chr$(154);"press any key to continue:";
1190 get a$: if a$="" goto 1190

1200 return

The weight matrix m is printed partially (as there’s not enough space on
the display) as colored symbols, where each symbol’s PETSCII value
equals the single weights’ values, while the color indicates the signs
— positives are blue, negatives are red.

1210 rem randomise 10 percent of 1%
1220 gosub 970:print "random"

1230 for i=1 to 42

1240 if rnd(@) > 0.1 then 1260

1250 f1%(1i)=-f1%(1)

1260 next i

1270 gosub 750

1280 return

The randomize command toggles the sign of random 10% of the ele-
ments in variable f1 in order to introduce noise to the pattern.

The recall command consists of three steps:

1290 rem recall from pattern
1300 gosub 970:print "recall"
1310 P%=1024+40%9+19

1320 rem initially copy fl to f2
1330 poke p%+1,asc("=")

1340 for i=1 to 42

1350 2% (1i)=Ff1%(1)

1360 next i

1370 gosub 860

1) copying the contents of variable f1 — the pattern loaded from ROM —
to variable 2,

1380 rem f1 to f2 pass
1390 poke p%,asc("=")
1400 poke p%+2,asc(">")
1410 for j=1 to 42

1420 v%=0
1430 for i=1 to 42
1440 V%=V%+T1%(1i)*m%(i,j)

1450 next i

1460 v%=5gn (V%)

1470 if v%<>0 then f2%(j)=v%
1480 next j

1490 gosub 860

2) calculate variable v as
42
v = sganLl-miJ
i=1

and update the elements of variable f2 as

Vi ifv#0

fZ, j otherwise,

fz,j=

1500 rem f2 to fl pass
1510 C%=0

1520 poke p%,asc("<")
1530 poke p%+2,asc("=")
1540 for i=1 to 42

1550 V%=0

1560 for j=1 to 42

1570 V%=V%+T2%(j)*m%(i,7])
1580 next j

1590 v%=5gn (V%)

1600 ifvs<>0andvs<>f1% (i) thenfl%(i)=v%:c%=1
1610 next i

1620 gosub 750

1630 if ¢%<>0 goto 1380
1640 poke p%,asc(" ")
1650 poke p%+1,asc(" ")
1660 poke p%+2,asc(" ")
1670 return

and 3) calculate

42
v =sgn) fm;

j=1

and update the elements of variable f1 as

V; ifv; # 0and v; # fi ;
i otherwise.

fl,i =

Also, after each of the steps, the user interface is updated.

1680 rem forget all - clear memory
1690 gosub 970:print "forget"
1700 for i=1 to 42

1710 f1%(1i)=0

1720 f2%(1)=0

1730 for j=1 to 42

1740 m%(i,]j)=0

1750 next j

1760 next i

1770 gosub 750

1780 gosub 860

1790 return

The forget command fills variables f1, f2, and m with zeros and updates
the information displayed on the user interface.

1800 rem save state to disc file

1810 gosub 970:print "save"

1820 print "";

1830 input "file name: ";a$

1840 a$="@0:"+a$+",s,w"

1850 open 5,8,5,a$

1860 for i=1 to 42:print#5,f1%(i):next
1870 gosub 2240

1880 for i=1 to 42:print#5,f2%(i):next
1890 gosub 2240

1900 for i=1 to 42

1910 for j=1 to 42

1920 print#5,mss(i,j)

1930 next j

1940 gosub 2240

1950 next i

1960 close 5

1970 print "";

1980 return

To save the variables f1, f2, and m to disk, the user first needs to specify
the file they should be stored in. This file is then opened and the variables
are written to it.

10

1990 rem restore state from disc file
2000 gosub 970:print "restore"
2010 print "";

2020 input "file name: ";a$
2030 a%$="@0:"+a%$+",s, r"
2040 p%s=asc(''m")

2050 gosub 2240

2060 open 5,8,5,a$

2070 for i=1 to 42

2080 input#5, f1%(1i)

2090 next i

2100 gosub 2240

2110 for i=1 to 42

2120 input#5, f2%(1)

2130 next i

2140 gosub 2240

2150 for i=1 to 42

2160 for j=1 to 42

2170 input#5,m%(i,j)

2180 next j

2190 gosub 2240

2200 next i

2210 close 5

2220 return

Similarly, the user needs to specify the file to load the variables 1, f2, and
m from if the load command is invoked. Then, the file is opened and
aforesaid variables’ values are assigned to the file’s contents.

2230 rem disc error check
2240 input#15,en,em$,et,es
2250 if en>0then print en,em$,et,es:stop

2260 return

This last function handles disc errors that might occur when reading or
writing files storing the weight matrix.

2.2 Reimplementation in Python 3

Before discussing the reimplementation, it is to note that non-essential
parts of the implementation, e.g. comments, are omitted in this section.
The full source code can be found at the end of the document.

from pattern import GROUND_TRUTH_PATTERN

Since nowadays operating systems no longer have symbols’ patterns
easily accessible stored in ROM, the reimplementation uses a handcrafted
variable containing the 7x6 element patterns of the learnable digits and
characters.

11

Today, altering what a computers’ screen displays is not as straight for-
ward as it used to be in the days of the C64. Therefore, a function for
printing the user interface to the command-line terminal is implemented.

def update_display(left: List[int], right: List[int], status: str,
middle: str ="' ', sleep: bool = True) —> None:
0s.system(CLEAR_COMMAND)
print('\033[95;45m', end="")

First, whenever the user interface is updated, the command-line terminal
is cleared and the foreground and background colors are configured.

print(’ NEURON NETWORK ASSOCIATIVE MEMORY ")

for _ in range(3):
print(40x' ")

print(" — — ")
for row in range(7):
print("' |', end="")
for col in range(6):
print('x" if left[6 * row + col] == 1 else ' ', end="")
if row == 4:
print(f'| {middle} |', end='")
else:
print ("] |', end="")
for col in range(6):
print('x' if right[6 * row + col] == 1 else ' ', end='")
print("| ")
print(" L 1 L 1 ")

Then, after printing the title and some empty lines, the patterns and sur-
rounding borders are printed.

print(40x' ')

print('F1 — TEACH PATTERN F2 - DUMP MATRIX ')
print('F3 — RANDOMIZE PATTERN F4 - FORGET ALL ')
print('F5 — RECALL PATTERN F6 - QUIT ")
print('F7 — DISC SAVE F8 — DISC LOAD ")

print(40x' ')

print('A-Z, ©-9: LOAD PATTERN ")
print(40x' ')

print(status, (39-len(status))x' ')

print(40x' ‘)

Followed by the listing of commands the user can invoke as well as the
patterns of digits and characters that can be loaded.

12

print(39%' ', '\033[@om', '\r', end='")

Then, the foreground and background color configuration is set back to
default. This is necessary so that the user interface appears to be rec-
tangular, even though it just covers a portion of the actual screen.

if sleep:
time.sleep(1)

In a last step, it pauses the program’s execution for 1 second to make us-
ing the created learning resource more playful and to honor the original
implementation.

The main program mainly implements a loop waiting and handling user
input. Even though Python’s paradigms would allow (and encourage) the
implementation of individual functions for the individual commands, the
reimplementation takes over the original source code’s program flow to
make it more recognizable.

def main() -> None:
fl = [0 for _ in range(42)]
f2 = [0 for _ in range(42)]
m = [[0 for _ in range(42)] for _ in range(42)]

Since Python does not allow easy low level memory access, the variables
f1, f2, and m are not declared as arrays but lists.

while True:
update_display(f2, f1, 'READY', sleep=False)

cmd = input(‘').strip().upper()

In the beginning of every loop cycle, the user interface is updated and the
program waits for user input. Here, any user input must be written out as
text input, whereas the original implementation handled key strokes di-
rectly. This reimplementation omits this functionality — even though easy
to implement — to make the source code more easy to understand for
readers with little programming experience.

if len(cmd) ==
continue

Empty user inputs (only pressing enter) do not invoke any function, not
even an error message.

elif len(cmd) == 1: # LOAD PATTERN
if cmd in GROUND_TRUTH_PATTERN:
update_display(f2, f1, f'FETCH {cmd}"')

f1 = GROUND_TRUTH_PATTERN [cmd] . copy ()
else:
update_display(f2, f1, 'INVALID INPUT’)

Inputting any digit 0-9 or character A-Z loads the symbol’s pattern from
the previously introduced variable that replaces the ROM. For any other
standalone symbol, an error message is displayed.

13

elif len(cmd) == 2:
if emd[0] == 'F':
if emd[1] == '1': # TEACH PATTERN
update_display(f2, f1, 'TRAINING')

for i in range(42):
for j in range(42):
mlil[§] += f1[i] = f1[j]

Inputting F1 invokes the training process for the pattern that is stored in
variable f1, implementing the equation just as the original source code
does.

elif cmd[1] == '2': # DUMP MATRIX
0s.system(CLEAR_COMMAND)

for i in range(23):
for j in range(40):
if mlil[j] < 0:
print('\033[31;45m', end="")
else:
print('\033[34;45m', end="")

print(chr(ord('0') + abs(m[i]l[j]1)), end="")
print()

print('\033[95;45mPRESS ENTER TO CONTINUE:',
' \033[00m\r', end='")

input(‘’”)

Inputting F2 will output the same subset of the weight matrix m as the
original source code does, with the same coding as used in the original
source code.

elif cmd[1] == '3': # RANDOMIZE PATTERN
update_display(f2, f1, 'RANDOM')

for i in random.sample(list(range(42)), 4):
f1[il *= -1

Inputting F3 randomly toggles the sign of random 10% of variable f1’s el-
ements.

elif cmd[1] == '4': # FORGET ALL
update_display(f2, f1, 'FORGET')

for i in range(42):
f1[i]l = 0
f2[i] = 0

for j in range(42):
m[il [j] = @

Inputting F4 iterates all elements in variables f1, f2, and m and sets their
values to zero.

14

elif cmd[1] == '5': # RECALL PATTERN
update_display(f2, f1, 'RECALL', ' ="')

for i in range(42):
f2[i] = f1[il

update_display(f2, f1, 'RECALL', '==>')

for j in range(42):
v==0

for i in range(42):
v += f1[i] *x f2[j]

v = sgn(v)

if v !'= 0:
f2[j]1 = v

update_display(f2, f1, 'RECALL', '<==')
c=20

for i in range(42):
v =20

for j in range(42):
v += f2[j] *x m[i] [j]

v = sgn(v)

if v '= 0 and v !'= f1[il:
f1[i] = v
c=1

Inputting F5 implements the recall of patterns just as the original source
code does, updating the user interface for all intermediate steps.

elif emd[1] == '6': # QUIT
update_display(f2, f1, 'QUIT', ' ="')

0s.system(CLEAR_COMMAND)

return

Inputting F6 exits the program.

elif emd[1] == '7': # DISC SAVE
update_display(f2, f1, 'SAVE TO DISK: NEURON64.TXT')

with open('neuron64.txt', 'wb', 1_024) as file:
pickle.dump(m, file, 0)

Inputting F7 stores the contents of variables 1, f2, and m to a preset file
on disk. Here, other than in the original implementation, the file cannot be
specified by the user — it is not a core functionality and omitting it keeps
the code leaner and easier to understand. Also, a Python package? for
storing variables to files is used. This simplification was made as storing
and loading variables is not an essential part of the program.

2 Python packages provide functionality without the need of implementing
those for every software project anew. Nowadays this is a common thing
to do but it was not at the time of Walker’s implementation.

15

elif cmd[1] == '8': # DISC LOAD
update_display(f2, f1, 'LOAD FROM DISK: NEURON64.TXT')

if os.path.isfile('neuron64.txt'):
with open('neuron64.txt', 'rb', 1_024) as file:
[m, f1, f2] = pickle.load(file)

else:
update_display(f2, f1, 'FILE NEURON64.TXT MISSING')

Inputting F8 loads the contents of variables f1, f2, and m from the same
files as stored to when inputting command F7. This is done using the
same Python package (for the same reason) as discussed before.

else:
update_display(f2, f1, 'INVALID INPUT')

else:
update_display(f2, f1, 'INVALID INPUT')
else:
update_display(f2, f1, 'INVALID INPUT’)

In case anything else is inputted, an error message is displayed.

16

3 Usage

The usage of the program — both original and reimplementation — can
exemplarily be described as follows:

After starting the program, the user can load patterns into the user inter-
face’s right field by inputting? digits or letters. Once a pattern is loaded, by
inputting F1, the neural network can be trained to recognize (recall) the
pattern. This may be repeated for several patterns — the learning capabil-
ity lies below 5 patterns, though.

After the neural network is trained or a trained network is loaded — by
inputting F8 — from disk, the network can be used to recall the pattern
loaded into the user interface’s right field by inputting F5. Here, the quality
of the network’s capability to recognize patterns becomes evident. Addi-
tionally, noise can be introduced by inputting F3 to test the robustness of
the trained network.

Also, at any time during the use of the program, the network’s weight ma-
trix can be outputted by inputting F2 or stored to disk by inputting F7. In-
putting F6 will quit the program.

1 Any input in the reimplementation must be typed out and confirmed by
pressing the return key.

17

4 Conclusion

The present seminar paper documents the reimplementation of the neural
network implementation by Walker (1987), widely preserving the program
flow and recreating the user interface, as can be seen in figure 3. It offers
the same functionality and, in this, is limited by the same constraints in
terms of learning capabilities.

The reimplementation can easily be executed on any modern computer
that has Python 3 installed. The source code is lean, easy to understand,
and widely preserves the original implementation's program flow. Hence,
it should be a suitable learning resource for getting to know the field of
Al,or a useful reference for studying the evolution of the field. Also, the
skeuomorphic approach of the implementation — imitating the user expe-
rience of the original implementation — makes using the reimplementation
playful and honors the original implementation.

Figure 3: Recreated user interface of the reimplementation.

18

5

Discussion

The present seminar paper is limited in two different ways, which are
briefly discussed in the following:

1.

Due to the extend of such a seminar project, the used program-
ming languages cannot be discussed other than as sketchily as
done here. This might be a barrier for readers that have no or just
little experience in programming.

Since modern day operating systems do not provide information
on symbols’ patterns that is as easy to access as it was at the
times of the original implementation, a handcrafted replacement
needed to be implemented. This deviation from the original imple-
mentation should not be hindering in serving the purpose of the
project discussed in section 1, as it’s not an essential part of the
implemented Al approach.

Other than that, the reimplementation did not bear any bigger challenges
— thanks to J. Walker’s clean implementation style and good documenta-
tion of it.

19

Bibliography

Arora, S. K. (2022, February 23). 20 Best Machine Learning Books for Be-
ginner & Experts in 2022. hackr.io. Retrieved on March 10, 2022, from
https://hackr.io/blog/best-machine-learning-books

Cave, S., & Dihal, K. (2018). Ancient dreams of intelligent machines: 3,000
years of robots. Nature, 559, 473-475. https://doi.org/10.1038/
d41586-018-05773-y

Kubrick, S., & Clarke, A. C. (1968). 2001: A Space Odyssey [Movie].
Metro-Goldwyn-Mayer.

MIT Teaching + Learning Lab [MIT-TLL]. (no date). Teaching an In-
terdisciplinary Subject. Retrieved on March 10, 2022, from https://tl-
l.mit.edu/teaching-resources/how-to-teach/teaching-an-interdisciplinary-
subject/

Toews, R. (2020, June 28). Here Is How The United States Should Regu-
late Artificial Intelligence. Forbes. https://www.forbes.com/sites/robtoews/
2020/06/28/here-is-how-the-united-states-should-regulate-artificial-intel-
ligence/?sh=3d1db60e7821

Wachowski, L., & Wachowski, L. [The Wachowskis]. (1999). The Matrix
[Movie]. Warner Bros.

Walker, J. (1987, September 4). Neural Network on a Commodore 64.
Fourmilab Switzerland. Retrieved on March 10, 2022, from https://www.-
fourmilab.ch/documents/commodore/BrainSim/

20

https://hackr.io/blog/best-machine-learning-books
https://doi.org/10.1038/d41586-018-05773-y
https://doi.org/10.1038/d41586-018-05773-y
https://tll.mit.edu/teaching-resources/how-to-teach/teaching-an-interdisciplinary-subject/
https://tll.mit.edu/teaching-resources/how-to-teach/teaching-an-interdisciplinary-subject/
https://tll.mit.edu/teaching-resources/how-to-teach/teaching-an-interdisciplinary-subject/
https://www.forbes.com/sites/robtoews/2020/06/28/here-is-how-the-united-states-should-regulate-artificial-intelligence/?sh=3d1db60e7821
https://www.forbes.com/sites/robtoews/2020/06/28/here-is-how-the-united-states-should-regulate-artificial-intelligence/?sh=3d1db60e7821
https://www.forbes.com/sites/robtoews/2020/06/28/here-is-how-the-united-states-should-regulate-artificial-intelligence/?sh=3d1db60e7821
https://www.forbes.com/sites/robtoews/2020/06/28/here-is-how-the-united-states-should-regulate-artificial-intelligence/?sh=3d1db60e7821
https://www.fourmilab.ch/documents/commodore/BrainSim/
https://www.fourmilab.ch/documents/commodore/BrainSim/

Source Code Listings

pattern.py

"""Neural Network on a Commodore 64 —--— Python 3 Clone

This software program is a Python 3 clone of the software J. Walker
released on September 4, 1987. It is available on the website

https://www.fourmilab.ch/documents/commodore/BrainSim/

and implements a "complete neural network associative memory pattern
recogniser".

This program was written by P. Reiske (TU Berlin) and submitted to
S. Holtgen (HU Berlin) on March 16, 2022.

GROUND_TRUTH_PATTERN = {
o' [

-1, 1, 1, 1, 1, -1,
1, -1, -1, -1, -1, 1,
i, -1, -1, -1, 1, 1,
i, -1, 1, 1, -1, 1,
1, 1, -1, -1, -1, 1,
i, -1, -1, -1, -1, 1,
i, 1, 1, 1, 1, -1,

’
1': [
_11 _11 1! 1! _11 _11
-1, -1, 1, 1, -1, -1,
_1' 11 11 1' _11 _11
_11 _11 1! 1! _11 _11
-1, -1, 1, 1, -1, -1,
-1, -1, 1, 1, -1, -1,
L 1, 1, 1, 1, 1,
1,
20 [

lllll

lllll

lllll

IIIII

lllll

lllllll

lllllll

lllllll

IIIIIII

lllllll

lllllll

lllllll

lllllll

IIIIIII

lllllll

lllllll

lllllll

lllllll

IIIIIII

lllllll

lllllll

lllllll

lllllll

IIIIIII

lllllll

llllll

llllll

llllll

IIIIII

llllll

lllllll

lllllll

lllllll

IIIIIII

lllllll

22

lllllll

lllllll
Ll B B B B |
[[
lllllll
L B B B B B B |
I I
lllllll

lllllll

lllllll

lllllll

lllllll

IIIIIII

lllllll

lllllll

lllllll

lllllll

IIIIIII

lllllll

lllllll

lllllll

L B B B B |
[[
lllllll
L B B B B B B |
I I
lllllll
D B e B B B B B |
[[
lllllll
L B e B e |

lllllll

lllllll

Lo B B B B B o |

[[|
lllllll
L B o B B B o B B o |

I [
lllllll
D B o B B B e B |

[[
lllllll
L B e B e |

lllllll

lllllll

lllllll

IIIIIII

lllllll

lllllll

Do B o B B B o B B o |
[[|
lllllll
Lo B B B e B B o |
[[|
lllllll
Lo B o B B B o B |
[[
lllllll
Do B e B B B o B o |
[[
lllllll
L B e B e |

23

lllllll

lllllll

lllllll

IIIIIII

lllllll

lllllll

lllllll

lllllll

IIIIIII

lllllll

lllllll

lllllll

lllllll

IIIIIII

lllllll

lllllll

lllllll

lllllll

IIIIIII

lllllll

lllllll

lllllll

lllllll

IIIIIII

lllllll

lllllll

lllllll

lllllll

IIIIIII

lllllll

’’’’’

lllll

IIIII

IIIII

lllll

24

lllllll

Lo B B B o B B B |
l [I
Lo B B B B e B B |

(| [
lllllll
L e B B B B B o |

11 |
lllllll
Lo B B B B o B B |

[[I
lllllll
L B B B B e B B |

(| [
lllllll
L e B B B |

lllllll

lllllll

lllllll

IIIIIII

lllllll

lllllll

Lo B B B B B B o |
l [
Lo B B B B B B |
(| | |
lllllll
L B B B B B o |
11 [
lllllll
Lo B B B B o B B |
[[I
lllllll
L B B B B e B B |
(| [
lllllll
L e B B B |

lllllll

TR T
L B B B B B B o |
(| (|
lllllll
L B B B B B o |
11 11
lllllll
Lo B B B B o B B o |
[[
lllllll
L B B B B B B |
(| (|
lllllll
— e e e e e
| (I |
~nn
—_-

lllllll

lllllll

lllllll

IIIIIII

lllllll

lllllll

lllllll

lllllll

IIIIIII

lllllll

25

lllllll

lllllll

lllllll

IIIIIII

lllllll

lllllll

lllllll

lllllll

IIIIIII

lllllll

lllllll

lllllll

lllllll

IIIIIII

lllllll

lllllll

lllllll

lllllll

IIIIIII

lllllll

26

It is available on the website

https://www.fourmilab.ch/documents/commodore/BrainSim/
and implements a "complete neural network associative memory pattern

recogniser".
This program was written by P. Reiske (TU Berlin) and submitted to

This software program is a Python 3 clone of the software J. Walker
S. Holtgen (HU Berlin) on March 16, 2022.

"""Neural Network on a Commodore 64 ——— Python 3 Clone

released on September 4, 1987.

#!/usr/bin/env python3

import pickle
import platform
import random
import time
import os

NOTE Since nowadays computers do no longer have easily accessible
read-only memory fields to get characters' patterns from, the variabel
“GROUND_TRUTH_PATTERN" is used to replace it.

from pattern import GROUND_TRUTH_PATTERN
from typing import List

CLEAR_COMMAND = 'clear' if platform.system() != 'Windows' else 'cls'

def

def

sgn(x: int) —> int:
"""Signum function

The signum function returns -1 if argument “x° has an value less than

zero, 1 if argument *x° is greater than zero, and @ if argument “x°
equals zero.

if type(x) is not int:
raise TypeError('Argument x must be of type int.')

if x < 0:
return -1

if x ==
return 0

return 1

update_display(left: List[int], right: List[int], status: str,
middle: str = ' ', sleep: bool = True) —> None:

"""Update user interface on command-line

Keyword arguments:

left : List[int] —- Pattern to be displayed in the left field.

right : List[int] —- Pattern to be displayed in the right field.

status : str —— Status information to be displayed in the bottom line.

middle : str —— Up to three characters to be displayed in between the
pattern fields.

sleep : bool —— En—-/ or disable 1 second sleep after updating the
interface.

Clear command-line interface
0s.system(CLEAR_COMMAND)

Configure command-line colors
print('\033[95;45m', end="")

Print title line
print(’ NEURON NETWORK ASSOCIATIVE MEMORY ")

27

Print empty lines
for _ in range(3):
print(40x' ')

Print top border of pattern fields
print(’ | — 1

")

Print pattern (and the field's left and right borders)

for row in range(7):

Print left border of the left pattern fields

print("' |', end="")

Print symbols in left pattern field
for col in range(6):

print('x"' if left[6 *x row + col] == 1 else ' ', end="")

Print right border of the left pattern field, left border of the
right pattern field, and (optional) the characters to be

displayed in between those two fields.

if row == 4:

print(f'] {middle} |', end='")
else:

print("] |', end="")

Print symbols in right pattern field
for col in range(6):
print('x"' if right[6 * row + col] ==

Print right border of left pattern field
print("|)

Print bottom border of the pattern fields
print(' | L 1

Print empty line
print(40x' ')

Print list of available commands

print('F1 — TEACH PATTERN F2 — DUMP MATRIX
print('F3 - RANDOMIZE PATTERN F4 - FORGET ALL
print('F5 — RECALL PATTERN F6 — QUIT
print('F7 - DISC SAVE F8 — DISC LOAD

Print empty line
print(40x' ')

Print available patterns
print('A-Z, 0-9: LOAD PATTERN

Print empty line
print(40x' ')

Print status line
print(status, (39-len(status))x' ')

Print empty line
print(40x' ')

Reset command-line colors
print(39%' ', '\@33[0@0m', '\r', end='")

Sleep for 1 second (optional)

if sleep:
time.sleep(1)

def main() -> None:

else ' ', end='")

")

—_——— —

")

28

f1 = [0 for _ in range(42)]

f2 = [0 for _ in range(42)]

m = [[0 for _ in range(42)] for _ in range(42)]
while True:

update_display(f2, f1, 'READY', sleep=False)

Wait for user command
cmd = input('').strip().upper()

if len(cmd) == 0:
Skip empty command
continue
elif len(cmd) == 1: # LOAD PATTERN
if cmd in GROUND_TRUTH_PATTERN:
update_display(f2, f1, f'FETCH {cmd}')

f1 = GROUND_TRUTH_PATTERN [cmd] . copy ()

else:
Invalid user input, print command-line user interface
with error message.
update_display(f2, f1, 'INVALID INPUT')

elif len(cmd) == 2:

if cmd[0] == 'F':

if cmd[1] == '"1': # TEACH PATTERN
update_display(f2, f1, 'TRAINING')

for i in range(42):
for j in range(42):
mlil [j] += f1[i] * f1[j]
elif ecmd[1] == '2': # DUMP MATRIX
0s.system(CLEAR_COMMAND)

for i in range(23):
for j in range(40):
if m[il[j] < o:
print('\033[31;45m', end="'")
else:
print('\033[34;45m', end="'")

print(chr(ord('0"') + abs(m[il[j])), end='")
print()

print('\033[95;45mPRESS ENTER TO CONTINUE:',
! \033[00m\r', end="")

input('")
elif cmd[1] == '3': # RANDOMIZE PATTERN
update_display(f2, f1, 'RANDOM')

for i in random.sample(list(range(42)), 4):
f1[i] *= -1
elif cmd[1] == '4': # FORGET ALL
update_display(f2, f1, 'FORGET')

for i in range(42):

f1[i]l = 0
f2[i]l =0
for j in range(42):
m[il[j] = ©
elif cmd[1] == '5': # RECALL PATTERN
update_display(f2, f1, 'RECALL', ' ="')

for i in range(42):
f2[i] = f1[il

29

update_display(f2, f1, 'RECALL', '==>'")

for j in range(42):
v==0

for i in range(42):
v += f1[i] *x f2[j]

v = sgn(v)

if v !'= 0:
f2[j]1 = v

update_display(f2, f1, 'RECALL', '<==')
c=20

for i in range(42):
v =20

for j in range(42):
v += f2[j] * m[i]l [j]

v = sgn(v)
if v 'I= 0 and v !'= f1[il:
f1[il = v
c=1
elif cmd[1] == '6': # QUIT
update_display(f2, f1, 'QUIT', ' ="')

0s.system(CLEAR_COMMAND)

return
elif ecmd[1] == '7': +# DISC SAVE
update_display(f2, f1, 'SAVE TO DISK: NEURON64.TXT')

with open('neuron64.txt', 'wb', 1_024) as file:
pickle.dump(m, file, 0)
elif cmd[1] == '8': # DISC LOAD
update_display(f2, f1, 'LOAD FROM DISK: NEURON64.TXT')

if os.path.isfile('neuron64.txt'):
with open('neuron64.txt', 'rb', 1_024) as file:
[m, f1, f2] = pickle.load(file)
else:
update_display(f2, f1, 'FILE NEURON64.TXT MISSING')

else:
Invalid user input, print command-line user interface
with error message.
update_display(f2, f1, 'INVALID INPUT')
else:
Invalid user input, print command-line user interface
with error message.
update_display(f2, f1, 'INVALID INPUT')
else:
Invalid user input, print command-line user interface
with error message.
update_display(f2, f1, 'INVALID INPUT')

if __name__ == '__main__"':
main()

30

Affidavit

| hereby declare that | have prepared the present seminar paper indepen-
dently and without any other but the documented and authorized help and
resources. Every passage in which the thoughts of others have been
adopted (literal or in their sense) are made recognizable as such. All refer-
ences are listed without any exception.

The present seminar paper has not been submitted to any other person or
institution for examination before.

%A‘ll . 2isl

Patrik Reiske on March 16, 2022 in Berlin.

31

	Contents
	1 Introduction
	2 Implementation
	2.1 Analysis of the J. Walker’s Source Code
	2.2 Reimplementation in Python 3

	3 Usage
	4 Conclusion
	5 Discussion
	Bibliography
	Source Code Listings
	pattern.py
	main.py

	Affidavit

