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ABSTRACT

8bc is a mostly feature-complete B-compiler for the PDP-8 minicomputer. In contrast to
contemporary B implementations, 8bc generates native PDP-8 assembly in a single pass.
A deferred instruction generator omits unnecessary instructions and feeds information
about the current program state back to the code generator, allowing it to make a situa-
tion-dependent choice about the code generated for high-level language constructs.

Using this compiler as an example, we explore historical and contemporary ap-
proaches to compiler design and discuss the mutual influence of and on available comput-
ing hardware with a special focus on the PDP-8 that guided the evolution of modern pro-
cedural languages.
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1. Introduction

The B programming language [2] was designed in 1969 by Ken Thompson and Dennis Ritchie as a simpli-
fied version of BCPL [3] for use with the PDP-7 minicomputer [1]. Being the predecessor of C, the B pro-
gramming language remains an important milestone in the continued evolution of procedural languages
from first works by Rutishauser over ALGOL 60 and BCPL to B and C and finally to modern incarnations
like Limbo, Go, and Rust.

The goal of this work is to give an overview over this evolution and to outline the constraints and fea-
tures of historical machines as well as the programming techniques known in the day and how they influ-
enced the design of contemporary procedural languages and their implementations. We contrast this with
8bc, a rather straightforward implementation of the B language for the PDP-8 minicomputer using modern
industry standard tools and a design approach that started to become commonplace in the 1980s.

The design of 8bc and the PDP-8 target architecture was chosen to highlight the characteristics of the
PDP-8, what design concessions had to be made to bring B to it, and how computers evolved to satisfy the
demands of procedural languages.

2. Background

2.1. The B language

The B programming language was designed by Ken Thompson and Dennis Ritchie of Bell Labs as a sim-
plified variant of the BCPL language for use on the PDP-7. The simplifications encompassed a removal of
all language features programmers could make do without as well as a change from BCPL’s wordy AL-
GOL-like syntax to a syntax built around an extensive use of punctuation, allowing the programmer to write
terser programs and the parser to be less complex.

With these simplifications, a self-hosting B compiler was written for the PDP-7. B code is compiled
to a form of threaded code operating mainly on a stack of data, conveniently using the same instruction en-
coding as the PDP-7 [4]. The stack comprises of lvalue/rvalue pairs where the lvalue contains the address
of a datum. If the object on the stack is not a true lvalue (e.g. because it is an intermediate value), the
lvalue field points to the rvalue field containing the objects rvalue.

While slightly wasteful, the take-address operator & and the dereference operator * can be imple-
mented easily in this scheme and lvalues do not need to be distinguished from rvalues for most parts. In the
B runtime for the PDP-11, this scheme was altered to push rvalue slots to the stack manually whenever
needed. While making the compiler more complicated, both memory usage and program performance is
improved. 8bc uses a similar concept born out of the PDP-8’s lack of useful addressing modes.

2.1.1. Syntax and features

Being the predecessor of C, the feature set of B is best described by explaining what features where added
when B evolved into C.  A more detailed description can be found in [2].

• B is a typeless language; all objects are machine words

• structures, unions, enumerations, type definitions, and type qualifiers are absent

• consequently, the declaration syntax is simple and does not mention any of these
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• all local variables are automatic; the static keyword does not exist

• B does not have scopes

• explicitly declared as extrn (sic!) before use; as a popular extension, some compilers did so implicitly
when an undeclared name was operand to the () operator

• though popular extensions, the continue statement and do-while loops are absent

• the syntax for combined assignment operators is =op, not op=

• the short-circuit logic operators && and || are absent; as a popular extension, many B compilers imple-
mented & and | with their semantics when used in a control expression

• the operators ˜ and ˆ where absent in early versions of B; the token , is a separator, not an operator

• as with K&R C, the content of the standard library depends on the system with wildly varying contents

2.2. The PDP-8

The PDP-8 is a family of 12 bit minicomputers introduced by the Digital Equipment Corporation (DEC) in
1965. Being among the cheapest computers on the market while having a large variety of available periph-
erals an expansion modules, the PDP-8 and enjoyed a wide usage with over 300,000 units sold over the life-
span of the architecture. DEC being originally a supplier of laboratory equipment, intended the PDP-8 to
be used as a low-cost computer for controlling and processing data generated by such laboratory equip-
ment. However, its low-price, reliability, and versatility made computers from the PDP-8 series very popu-
lar in other applications such as health care, industrial process control, time sharing, and text processing.

The PDP-8’s design is an incremental upgrade over the PDP-5 architecture from 1963 with only mi-
nor changes, like an improved interrupt handling process and more ways to microcode OPR instructions.
Peripherals for the original PDP-8 “straight eight” were originally taken from the largely compatible pool
of PDP-5 peripherals, but were quickly replaced by newly designed PDP-8 peripherals. Starting with the
PDP-8/E (for which 8bc was designed), many machines of the PDP-8 family were built around the OM-
NIBUS system bus, enabling the construction of sophisticated expansion cards that would work on any
OMNIBUS system. Many such cards were designed for a wide range of applications, greatly contributing
to the popularity of the PDP-8.

2.2.1. Memory reference instructions

The PDP-8 has an address space of 4’096 words of 12 bits each. Later models extend the address space to
8 fields of 4’096 words each for a total of up to 32’768 words. As extended memory is not used by 8bc, we
do not furthe describe it in this article. Most instructions operate on a 12 bit accumulator AC and a 1 bit L
register that is connected to the accumulator’s carry-out are provided for operation. It is often useful to
think of L and AC as a single 13 bit accumulator L:AC. Being a von Neumann machine, the PDP-8’s pro-
gram is stored in the same 4’096 words of memory as the data. Each instruction comprises a 3 bit opera-
tion code followed by a 9 bit operand.

The instructions are:

0 AND and
1 TAD two’s complement add
2 ISZ index, skip if zero
3 DCA deposit, clear AC
4 JMS jump to subroutine
5 JMP jump
6 IOT IO transfer
7 OPR operate

The first six instructions are called memory reference instructions. Their operand is made of an indirection
bit, a page bit, and a 7 bit address. If the page bit is set, the address is completed with the high 5 bits of the
program counter, otherwise zeros are used. If the indirection bit is set, that address is used to look up the
actual address from memory. As an example, consider the instruction 3245 located at address 1757. The
operation code is 3, indicating a DCA instruction. The P bit is set, so the address 0045 is completed with
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1600 from the program counter, yielding an operand of 1645. The encoded instruction is thus DCA 1645,
which deposits the content of AC into the memory at address 1645 and then clears AC.

2.2.2. Microcoded instructions

The operate instruction OPR interpretes its operand as a bitmask of operations to execute. Three groups of
operate instructions exist and within each group, an arbitrary set of instructions can be microcoded together
to execute at once by computing the bitwise or of their operation codes. The first group provides ways to
set up the L and AC registers, increments, and rotations.

7200 CLA clear AC
7100 CLL clear L
7040 CMA complement AC
7020 CML complement L
7010 RAR rotate L:AC right
7012 RTR rotate L:AC twice right
7004 RAL rotate L:AC left
7006 RTL rotate L:AC twice left
7002 BSW byte swap AC
7001 IAC increment L:AC

When multiple group 1 instructions are microcoded together, first CLA and CLL are executed, then CMA
and CML, then IAC, and finally the rotate instructions RAR, RTR, RAL, RTL, and BSW, of which at most
one can be microcoded into any given operate instruction. Operate instructions from group 1 are com-
monly used to aid in implementing complex arithmetic operations. For example, to compute A ∨ B, one
needs to compute A + B - (A ∧ B):

CLA / clear AC
TAD A    / compute 0 + A i.e. load A
AND B    / compute A ∧ B
CMA IAC  / compute ¬(A ∧ B) + 1, i.e. -(A ∧ B)
TAD A    / compute A - (A ∧ B)
TAD B    / compute A + B - (A ∧ B), i.e. A ∨ B

Another common purpose is the generation of small immediate constants, removing the need to place a lit-
eral into the current or zero page.

Most of operate group 2 provides instructions for conditional execution depending on the content of
L:AC. Instead of performing conditional jumps, the next instruction is skipped if the condition holds. The
following microcodable instructions are available:

7600 CLA clear AC
7500 SMA skip on minus AC
7440 SZA skip on zero AC
7420 SNL skip on non-zero L
7410 SKP reverse skip condition
7404 OSR or switch registers
7402 HLT halt

Additionally, the mnemonics

7510 SPA skip on positive AC
7450 SNA skip on non-zero AC
7430 SZL skip on zero L

are provided for skip conditions micro-coded with SKP. All of these instructions can be microcoded with
each other. First, SMA, SZA, and SNL are executed and the next instruction skipped if any of the conditions
holds. If SKP is microcoded in, the skip condition is flipped. Then, CLA is executed and finally OSR (sens-
ing the state of the front panel’s switches) and HLT. With these instructions, unsigned comparisons can be
implemented easily. Due to the lack of an overflow flag it is however rather hard to program signed (two’s
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complement) comparison and support for such has been omitted from 8bc in favour of unsigned compar-
isons.

A third group of operate instructions exists but remains unused by 8bc. This group of instructions
manipulates the extended arithmetic element (EAE), an add-on for the PDP-8/E that provides extra arith-
metic instructions.  We do not consider it any further in thid document.

2.2.3. Accessing peripherals

The IO transfer instruction IOT is used to communicate with peripherals. Its operand is split into a 6 bit
device number and a 3 bit field each device can interpret as it wants. These three bits are commonly used
to either provide 8 device specific operation codes or 3 operation codes that can be microcoded as desired.
Many devices occupy multiple device numbers with each device number performing a different set of oper-
ations. Some rare peripherals even use parts of the device number as additional operation bits.

As an example, the serial communication module is implemented as two devices, keyboard, and
teleprinter. The keyboard responds to device 03 and provides the following microcodable operations:

6031 KSF keyboard skip if flag
6032 KCC keyboard clear and read character
6034 KRS keyboard read static
6036 KRB keyboard read and begin next read

When a character is received through the serial line, an internal flag is set. This flag can be queried for with
a waiting loop around OnceKSF. be reset to allow for the next character to be received and the current
character needs to be transferred to AC. This can be done with a KCC and a KRS instruction microcoded
into one, giving KRB. This yields the following idiom to read a character from the keyboard:

KSF / skip if character is ready
JMP .-1  / if not, loop until it is

KRB / transfer character to AC

Likewise, the teleprinter responds to device 04 and provides the following microcodable operations
to send characters:

6041 TSF teleprinter skip if flag
6042 TCF teleprinter clear flag
6044 TPC teleprinter print character
6046 TLS teleprinter load and start

The operation is similar to the keyboard. An internal flag is set once a character has been transmitted and
must be manually cleared so the transmission of the next character can be detected. This can be done by
microcoding TCF with TPC, a combination for which the mnemonic TLS is provided. This yields a com-
mon idiom to send a character:

TSF / skip if previous character transmitted
JMP .-1  / if not, loop until it has been

TLS / send character in AC

3. The design of 8bc

The design of 8bc was driven by the desire to generate native code for the PDP-8 with acceptable perfor-
mance while limiting the size, resource consumption, and programming techniques of the compiler to the
state of the art in the early 1980’s. This way, we can not only give a good picture of how to cope with the
quirks and constraints of the PDP-8 but also explore compiler design from a historical perspective.

3.1. Runtime environment and ABI

The 8bc runtime makes some concessions to deal with the PDP-8’s restricted addressing mode, lack of
stack and archaic behaviour of the JSR instruction. Instead of generating a stack frame, each B function
has a dedicated call frame that stores a template for the zero page, space for the function’s parameters, the
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function’s automatic variables, and the previous content of the zero page to be restored on return.

3.1.1. Zero page usage

The zero page is special because it is the only page that can be addressed directly. B programs use the zero
page as follows:

0000–0007  interrupt handler
0010–0017 indexed registers
0020–0027  runtime registers
0030–0177  scratch registers

As interrupts are unsupported by B, the interrupt handler is a single HLT instruction at address 0001. Index
register 0010 is used to store one of the factors when the MUL routine is called. While the B compiler does
not otherwise use the index registers, they are used by the B runtime routines.

Scratch registers much be preserved by the callee, indexed registers need not. The runtime registers
are used to store pointers to important B runtime functions and as scratch space for those runtime registers.
The runtime registers are used as follows:

0020            pointer to the ENTER routine
0021            pointer to the LEAVE routine
0022            pointer to the MUL routine
0023            pointer to the DIV routine
0024            pointer to the MOD routine
0025            runtime scratch register
0026            runtime scratch register
0027            runtime scratch register

3.1.2. Function call sequence

A function is called with a JSR instruction followed by pointers to the function’s parameters. The number
of parameters must match the number of parameters in the function’s definition, the function returns to the
first instruction after the arguments.

The call frame looks as follows. The numbers of registers to save, function arguments to copy, and
registers to initialise are negated to simplify the ENTER and LEAVE runtime routines.

negated number of registers to save
space to save the registers
negated number of parameters
function parameters
negated number of register templates
register templates
space for automatic variables

The first instruction of every B function calls ENTER, a runtime function responsible for setting up the en-
vironment such that the function can do its job. To return, the B function calls LEAVE, a runtime function
that restores the zero page to its previous state and then returns from the function that called it.

The ENTER routine first copies all zero page registers that are going to be used into the call frame.
Then, the arguments are grabbed from the call site and copied into the call frame. The return address is ad-
justed to skip over them. Lastly, the register template is copied to the zero page. The LEAVE routine is
simpler: it copies the saved registers back into the zero page and returns to the caller.

3.2. Program structure

Like modern and historical C compilers, 8bc is split into a compiler driver 8bc that passes the source file
through compiler and assembler, interpretes options, prepends the B runtime brt.pal, and finally deletes in-
termediate files, and an actual compiler 8bc1 that translates B source into PAL assembly. This compiler is a
one pass compiler written in C using lex(1) and yacc(1) to generate lexer and parser. Contrary to historical
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B and C compilers (but not compilers for other languages such as Pascal), no intermediate representation of
the source code is used. Instead, code is generated at each parser action. This makes for a very memory
and time efficient design, but greatly restricts the amounts of optimisations possible.

Apart from a few global variables, the majority of the state remembered by the compiler is found in a
definition table for variables and functions defined at the top level and a declaration table for names de-
clared within a function. While the declaration table is vital for the compiler to find out about the storage
class about local names, the definition table is only needed due to shortcomings of the PAL assembler: as it
is limited to symbols of up to 7 alphanumeric characters, we cannot always use B names as symbol names.
Instead, the B compiler translates all names to numbered labels with the association between name and
number being kept in the declaration and definition tables.

3.3. Character set

8bc compiles B source files written in ASCII. To allow for source files to be composed on a real PDP-8 us-
ing an ASR 33 teletype, a 6 bit ASCII representation is used internally, mapping ASCII codes 0140–0176
to 0100–0140, yielding the character set:

normal alternative
! " # $ % & '

( ) * + , - . /
0 1 2 3 4 5 6 7
8 9 : ; < = > ?
@ A B C D E F G    ` a b c d e f g
H I J K L M N O    h i j k l m n o
P Q R S T U V W    p q r s t u v w
X Y Z [ \ ] ^ _    x y z { | } ~  

The alternative characters are treated equally to the normal characters except inside character or string liter-
als. Names and keywords are case insensitive. There is no alternative character for the _ character. For ex-
ample, the program

main() {
extrn putchar;
auto i 0, hello "Hello, World!*n";

while (hello[i] != '*e')
putchar(hello[i++]);

}

could equally be written as

MAIN() [
EXTRN PUTCHAR;
AUTO I 0, HELLO "Hello, World!*N";

WHILE (HELLO[I] != '*E')
PUTCHAR(HELLO[I++]);

]

While case is honoured inside string and character literals, the ASR 33 teletype is unable to read or print
ASCII characters from the alternative characters list and prints the corrsponding normal characters instead.
To provide UNIX-like semantics, the getchar() function translates CR to LF and clears the parity bit; the
function putchar() inserts a CR before each LF.



-7-

3.4. Storage classes

8bc recognises 7 storage classes. The storage class is used by the code generator to figure out how to refer
to an object. Each storage class exists as an lvalue and as an rvalue class. The difference is that the rvalue
storage class has an additional level of indirection. For example, an object of storage class RLABEL is the
value of a label. If we dereference an RLABEL, we get an object of storage class LLABEL which is the ob-
ject located at that label.  The lvalue storage classes are:

0 LCONST object at absolute address
1 LVALUE object pointed to by zero page register
2 LLABEL object pointed to by label
3 LDATA object in data area
4 LSTACK object pointed to by stack register
5 LAUTO object in automatic variable area
6 LPARAM object in parameter area

The storage class RCONST is used for constants. Stack register refers to a register in the zero page used to
spill temporary values. The first stack register follows the last register loaded from the zero page template.
Since the size of the zero page template is only known after the function has been compiled, the compiler
refers to stack registers through an offset from a label referring to the first stack register, necessitating a sep-
arate storage class.

A B object is converted from lvalue to rvalue through the & (take address) operator and back through
the * (dereference) operator. When an object that is not of class LVALUE, LSTACK, RVALUE, or RSTACK
is used as an operand to a memory instruction (one of AND, TAD, ISZ, DCA, JMS, or JMP), the object is
spilled by templating a zero page register with the object’s rvalue and substituting an object of type
LVALUE or RVALUE referring to said zero page register to render the original object accessible. Objects of
the various storage classes are otherwise created as follows:

RCONST numerical or character constant
LLABEL external variable, function, or label
LDATA string constant
RSTACK value of an expression
LAUTO automatic variable
LPARAM function parameter

3.5. Optimisations

8bc is an optimising compiler. Even though the lack of an intermediate code representation makes many
optimisations hard to perform, peephole optimisations are still possible. To implement these optimisations,
the compiler uses three layers of abstraction in code generation:

In the parser layer, each production rule’s action generates an instruction sequence that pops the op-
erands to the implemented operator from a virtual stack, computes the result, and pushes that result onto the
virtual stack.  For example, a parser action for the + operator could be:

expr = expr '+' expr {
lda(&$3);
pop(&$3);
tad(&$1);
pop(&$1);
push(&$$);

}

The function lda() requests for its argument to be loaded into AC and tad() requests for a TAD instruction to
be generated, implementing the behaviour of the + operator. The function push() allocates a new memory
cell on the virtual stack and writes AC to it, leaving its contents undefined. After loading a datum from the
stack, pop() is used to mark the top of the virtual stack as unused. Care must be taken to only pop the top
element off the stack.  This is ensured by always popping operands from right to left.
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Most parser actions are a bit more complicated than this example and provide multiple instruction se-
quences for different situations, e.g. special casing constant operands.

These functions lda(), and(), tad(), isz(), dca(), jms(), jmp(), and opr() are implemented in the stack
management module to request the generation of the equivalent instructions.1 The module watches the con-
tents of AC and eliminates stack allocations that can be satisfied by a constant or existing memory location,
turning the virtual stack into stack registers. When a newly allocated stack register is immediately loaded
back into AC and popped, the entire push(); lda(); pop(); sequence is discarded, generating no code at all.
Some strength reductions are performed as well.

Except for JMS instructions (which are directly emitted), each instruction is then passed into the in-
struction selection state machine. The state machine simulates the effect of the requested instructions to the
extent possible and defers all instructions whose effect is known at compile time until their effect can no
longer be simulated.

The state machine keeps track of the contents of AC and L and continuously replaces the deferred in-
structions with the shortest sequence of instructions needed to achieve the same effect; sequences that com-
pute constants are replaced by sequences of up to two OPR and TAD instructions, statically known skips are
eliminated, and skips setting AC to 0 or 1 followed by SZA or are merged into one.

Summarised, the following optimisations are performed:

3.5.1. Strategy Selection

An operation is translated into a sequence of instructions depending on which operands are constant, on the
stack, or already in AC. For example, a subtraction normally generates the sequence

expr = expr '-' expr {
lda(&$3);
pop(&$3);
opr(CMA | IAC);
tad(&$1);
pop(&$1);
push(&$$);

}

which adds the minuend to the two’s complement of the subtrahend. If the subtrahend is known to be a
constant and the minuend is known to already be in AC, the sequence

expr = expr '-' expr {
lda(&$1);
pop(&$1);
$3.value = RCONST | -val($3.value) & 07777;
tad(&$3);
push(&$$);

}

is emitted instead, adding the two’s complement of the subtrahend to the minuend already in AC, saving the
minuend from begin deposited on the stack and then reloaded.

3.5.2. Stack forwarding

When the content of AC is known to be a constant value or the result of loading another value, a call to
push() does not allocate a new stack register but instead returns whatever is currently in AC. This elimi-
nates useless stack registers and paves the way for constant folding.

3.5.3. Reload elimination

When the content of AC is pushed to the stack and then immediately loaded into AC and popped, the entire
push(); lda(); pop(); sequence is discarded, leaving the contents of AC untouched. This eliminates all

1 IOT instructions are never requested and not implemented.
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unnecessary stack operations during expression evaluation that are not already caught by stack forwarding.

3.5.4. Double load elimination

When AC is known to contain the content of a memory location and a load from that same location is re-
quested, the duplicate load is discarded. The same optimisation is performed for constants through the con-
stant folding optimisation.

3.5.5. Strength Reduction

Instructions which have no effect or can be replaced with OPR instructions are discarded or replaced. For
example, a tad() call that attempts to add 1 to AC is replaced with an IAC instruction.

3.5.6. Constant folding

Sequences of instructions resulting in a constant value in AC are deferred. The entire sequence is then re-
placed by one or two instructions loading the desired value into AC. If possible, OPR instructions are used
to reduce the size of the register template.

3.5.7. Skip elimination

Skip instructions that can be predicted at compile time are discarded. If the instruction is known to skip,
the skipped instruction is discarded as well.

3.5.8. Skip forwarding

A skip instruction that clears AC and is followed by IAC is recognised as setting AC to the result of the
condition. If such a sequence is followed by a SZA or SNA microcoded with CLA, the two skip instructions
are merged into one and the IAC is discarded.

3.6. Restrictions

Recursion is not supported. Due to time constraints, the switch statement was left out of the implementa-
tion. Implementations for the / and % operators are missing in brt.pal, but can easily be added. Many com-
mon B extensions such as do-while loops, the continue statement, or implementations of & and | with
short-circuit behaviour for control expressions were omitted. Redefinitions and use of undefined functions
or variables are not detected by the compiler but will lead to failure during assembly.

8bc directly generates a complete PAL program by concatenating the B runtime brt.pal and the com-
piler output. This runtime contains a rudimentary standard library comprising the functions exit(),
getchar(), putchar(), and sense(). No further library functions are provided. It is not possible to link two or
more B source files into a single binary and there is no way to write parts of the program in another lan-
guage.
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