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Structure of this workshop

The following slides are part of the Workshop ”Think Analogue:
Archaeologie, Praesenz und Kuenftigkeiten des Analogcomputers”,
11.-13. April 2012, Berlin1.

This workshop gives an introduction to the art of analog
computing by outlining some examples ranging from a
mass-spring-damper system to a bouncing ball in a box.

All examples have been programmed and executed on real analog
computers like the Telefunken RA742, etc.

1An analog :-) workshop was held at the VCFE 2006 in Munich.
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Mass-Spring-Damper System
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Mass-Spring-Damper system

The first example shows how to simulate the behaviour of a rather
simple mechanical system consisting of a mass, a spring and a
damper. The basic elements of this system are shown below with
the mathematical representation of the forces belonging to each:

Fd = dẏ
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Fm = ma = mÿ Fs = sy
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Putting all elements together

Connecting these three elements together yields (thanks to nature
and Newton) the following setup and equations:

mÿ + dẏ + sy = 0
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Fm + Fd + Fs = 0
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Rearranging the equation

To solve the equation

mÿ + dẏ + sy = 0

on an analog computer it is rearranged in a way that yields the
highest derivative of y on the left hand side:

ÿ = − 1

m
(dẏ + sy) .

For setting up the computer assume that ÿ is known and generate
the remaining terms incorporating lower derivatives of y by
successive integration, multiplication and summing of terms.
Note that each summer and each integrator will change the sign!
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Generating −ẏ

Assuming that ÿ is known, its next lower derivative, −ẏ , can be
generated by using an integrator. The initial condition input of this
integrator is used to set the initial value ẏ0 as shown in the picture
below:
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Generating Fs = sy

In the following step the force Fs exerted by the spring will be
generated:
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Generating Fd etc.

The force generated by the damper, Fd , can be generated
accordingly using the already knwon value −ẏ . The setup shown
below then creates the sum of Fs and Fd with a negative sign:
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Closing the loop

The sum − (Fs + Fd) can now be multiplied by the constant 1
m

yielding ÿ which is exactly what we expected at the input of the
circuit. So closing the loop will result in a computer setup solving
the initial differential equation readily:
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Setting up the computer

11/43 Prof. Dr. Bernd Ulmann 13. April 2012



Run with s = 0.2 and d = 0.8

Here and in the following m = 1 is assumed.
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Run with s = 0.4 and d = 0.8
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Run with s = 0.6 and d = 0.8
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Run with s = 0.8 and d = 0.6
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Run with s = 0.8 and d = 1
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Coupled DEQ Example
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Two coupled DEQs

The following example is more complicated than the simple
mass-spring-damper system shown before. The goal is to simulate
the changes in population numbers in a two species ecosystem
populated by rabbits r and lynxes l . Such a system is readily
described by Volterra’s differential equations:

ṙ = α1r − α2rl

l̇ = −β1l + β2rl

The parameters are as follows:

α1 Rabbit birth rate
α2 Rate of Rabbits killed by lynxes
β1 Lynx mortality rate
β2 Lynx population growth due to killed rabbits
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Partial circuit for ṙ = α1r − α2rl

First of all, let us solve ṙ = α1r − α2rl assuming that there is a
value rl already known. This leads to the following program:

−(−α1r + α2rl) = α1r − α2rl
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Partial circuit for l̇ = −β1l+β2rl

Next, let us solve l̇ = −β1l + β2rl – again under the assumption
that there already exists a term rl :

−β1l + β2rl
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Partial circuit for l̇ = −β1l+β2rl

Obviously we can do better and save two summers:
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Coupling both DEQs
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Scaling the equations

Due to the finite range of values which can be processed by an
analog computer, it is necessary to scale the equations to be solved
in order to avoid overloading the operational amplifiers and thus
introducing erroneous terms.
Coupled differential equations like the example above are normally
quite difficult to scale since it is challenging to estimate maximum
values for the variables.
If a direct scaling is not possible (or if the programmer is too lazy
which may be the case much more often) it is possible to run the
calculation with a guessed scaling and check for overloads. Then
use the values at the moment the overload occurred to determine
the next ”guess” and so on.
The values used for the following run were:
α1 = 0.17, α2 = 0.4, β1 = 0.1, β2 = 0.27, r0 = 0.2, l0 = 0.8 (quite
unrealistic number of initial lynxes to be honest).
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The completed program

The following pictures show the program as patched for a
Telefunken RA741 analog computer:
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The overall setup
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Running the simulation

The picture below shows the results of the running simulation:
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Ball in a Box
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Simulating a ball in a box

The following example is yet a bit more complicated – the
simulation of a ball bouncing in a box (cf. [1]) as shown below:
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(x, y)v
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Overall setup of the simulation

The ball is thrown into the left upper corner of the box with an
initial velocity of v0. Whenever it hits a wall of the box it will be
reflected elastically.

The ball is influenced by a gravitational force pointing downwards
and it looses energy by air friction (which is assumed to be
proportional to the speed of the ball).

The simulation setup consists of essentially four parts:

1 A (sin(ωt), cos(ωt))-generator to create a real ball instead of
a single moving point,

2 a circuit to generate the y -component of the ball’s movement
in the box,

3 a circuit to generate the x-component and, finally,

4 a summing circuit to overlay these signals in a proper manner.
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Generating the ball itself

This is the easiest part of the simulation. A simple
sine/cosine-generator with a rather high output frequency is
necessary to create the impression of a ball (circle). These two
values are generated by solving the well known differential equation
ÿ = −αy as shown below:
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Generating the ball itself

At the heart of this circuit is the simple sine/cosine-generator
constisting of two integrators and a summer. The first thing to
note is that the summing junctions of the integrators are used as
the main inputs, thus allowing the use of variable input resistances
by means of coefficient potentiometers. This is necessary to obtain
the desired high output frequency (large ω).

The feedback path from the summer output to the 1-input of the
rightmost integrator is used to ”heat up” the oscillation avoiding
excessive decay.

The two Zener-diodes are used to avoid overloading the integrator.
They will clip the output signal once it reaches one machine unit.
This, indeed, will result in a distorted output signal but this
distortion is negligible for this application.
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Calculating the y-position

The next step towards a complete simulation is the calculation of
the y -position of the bouncing ball. Drawing y(t) with t as the
free variable results in a graph as shown below:

t

y(t)

32/43 Prof. Dr. Bernd Ulmann 13. April 2012



Calculating y(t)

Three terms constitute ÿ : The (constant) gravitation, the damping
proportional to ẏ and the elastic rebound when the ball hits the
floor (y < −1) or the ceiling of the box:

ÿ = −g + dẏ

{
+ c

m (|y |+ 1) if y < −1
− c

m (y − 1) if y > 1

From ÿ the velocity ẏ and position y can be easily derived:

ẏ =

T∫
0

ÿ dt + ẏ0

y =

T∫
0

ẏ dt + y0
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Compute y(t)
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Tricks

There are some tricks used in this computer setup:

1 The condition of hitting the floor or the ceiling of the
surrounding box is detected by the two 10V-Zener-diodes
instead of a classical backlash setup. This has the
disadvantage that box heights different from ±1 are not
covered as would be possible by using a backlash. The
advantage is that two backlashes would require two amplifiers,
two potentiometers and four diodes which are saved this way.

2 The slower the ball gets, the smaller the acceleration of the
elastic rebounds will be. This is a bit unrealistic and will be
partly compensated for by using the summing junction of the
first integrator as the input from the simplified backlash
instead of using a weighted input.
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Calculating the x-position

The calculation of x(t) assumes that the velocity diminishes with
time t, eventually reaching zero (at this point the computer should
enter the halt or initial condition mode).

−1

x(t)

t

+1

Changing the direction of the ball when it hits the left or right wall
is a bit tricky as the following computer setup will show.
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Compute x(t)
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Putting everything together

Now having calculated y(t) as well as x(t) all that is left to do is
to superimpose those values with the (sin (ωt) , cos (ωt))-pair
generated previously to display a real ball at a particular position
vector (x(t), y(t)):
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The final computer setup
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Conclusion

The last picture was taken by Tore Sinding Bekkedal during the
VCFE 2006 where I demonstrated this simulation.

I hope you enjoyed the workshop and maybe you got a glimpse of
the feeling of thinking the ”analog way” as Dr. Giloi once said.

Analog computers are more than just fascinating relics – they are
the last reminescences of a wonderful technology and (way more
important) they teach one to think in a way completely different
from the way one with a background in digital processing is trained
to follow.

Thinking the analog way will result in solutions which might never
have been thought of in a conventional digital environment.

Thank you for your interest and your patience.
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Help

As you may have noticed, analog computing is my passion which
has led to a rather large collection of machines, documentation
etc. which is on display here:

http://www.analogmuseum.org

Being a collector, I would like to ask you for your support:

I am trying to save analog computers from scrap whereever I
can. If you happen to know about a system looking for a
good home, please let me know.

I am interested in trivia, documentation, computer setups,
sales brochures, etc.

Please spread the word and help to save these machines from
getting lost and forgotten.

You can reach me always at ulmann@vaxman.de or by mobile
phone at 0177/5633531 (in Germany). Thank you very much!
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AEG Telefunken, ”Demonstrationsbeispiel Nr.5, Ball im
Kasten”.
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